Skip to content

When a0a \ne 0, there are two solutions to (ax2+bx+c=0)(ax^2 + bx + c = 0) and they are

x=b±b24ac2ax = {-b \pm \sqrt{b^2-4ac} \over 2a}

Maxwell's equations:

equationdescription
B=0\nabla \cdot \vec{\mathbf{B}} = 0divergence of B\vec{\mathbf{B}} is zero
×E+1cBt=0\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}curl of E\vec{\mathbf{E}} is proportional to the rate of change of B\vec{\mathbf{B}}
×B1cEt=4πcjE=4πρ\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rhowha?